Rabu, 19 Januari 2022

KOORDINAT KUTUB DAN KOORDINAT KARTESIUS

Dalam ilmu Matematika pasti kita sudah tidak asing lagi dengan istilah koordinat kartesius Matematika. Sistem koordinat ini digunakan untuk menentukan letak titik relatif yang terdapat diantara dua sumbu, yakni sumbu x dan y. Penulisan koordinat dalam kartesius dapat berupa (x, y), dimana x adalah absis yang letak posisi titik relatifnya di sumbu x dan y adalah koordinat yang letak posisi titik relatifnya di sumbu y.

Koordinat Matematika tidak hanya kartesius saja, tetapi juga koordinat polar. Namun kedua jenis koordinat ini berbeda satu sama lain. Biasanya kartesius digunakan untuk menyelesaikan perhitungan geometri dan aljabar dalam Matematika. Koordinat kartesius dan koordinat polar pada umumnya berbeda, mulai dari segi pengertian, penggunaan dan penerapannya.

Polar merupakan salah satu jenis koordinat Matematika. Jenis koordinat ini dapat dinamakan dengan koordinat kutub. Polar digunakan untuk menggambarkan letak titik sesuai dengan jarak menuju titik pusatnya dan sudut di sumbu x. Polar dengan kartesius memiliki hubungan yang sangat erat. Maka dari itu koordinat dalam kartesius dapat dikonversikan menjadi polar, begitu pula sebaliknya. Nah dalam pembahasan kali ini saya akan menjelaskan tentang koordinat kartesius dan koordinat polar dalam Matematika. Untuk lebih jelasnya dapat anda simak di bawah  ini.

Mengenal Koordinat Kartesius dan Polar dalam Matematika

Sudah saya jelaskan di atas bahwa koordinat kartesius dan koordinat polar saling berhubungan satu sama lain. Untuk itu kedua jenis koordinat tersebut dapat dikonversikan satu sama lain. Agar anda lebih memahami mengenai kedua koordinat Matematika ini, maka dapat anda perhatikan gambar berikut:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Ilustrasi Koordinat Kartesius dengan Koordinat Polar

Berdasarkan gambar diatas, kita dapat menentukan dua koordinat melalui posisi P yaitu koordinat kartesius (dilambangkan dengan x, y) beserta koordinat polar (dilambangkan dengan r, α). Kartesius dalam koordinat x, y menggambarkan letak titik relatif di sumbu x dan y. Kemudian polar dalam koordinat r menggambarkan jarak antara sebuah titik dengan titik pusat O dan sudut α menggambarkan hasil pembentukan sudut antara sumbu x positif dengan ruas garis OP. Lantas bagaimana kedua koordinat Matematika tersebut dapat dihubungkan? Bagaimana cara mengkonversikan kartesius menjadi polar dan begitu pula sebaliknya?

Hubungan Koordinat Kartesius dengan Koordinat Polar (Kutub)

Hubungan antara koordinat kartesius dan koordinat polar ditunjukan dengan jarak titik asal O (0,0) dengan titik P (x, y). Jarak tersebut dapat dinamakan dengan jarak r. Untuk memperoleh nilai r tersebut dapat menggunakan rumus di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Rumus Jarak r

Kemudian koordinat kartesius dan koordinat polar akan menghasilkan sebuah sudut α. Sudut α ialah sudut yang terletak diantara garis hubung P terhadap titik O (0,0) dengan sumbu X positif. Namun perhitungannya berlawanan arah dengan arah pada jarum jam. Titik P tersebut dapat dinyatakan dalam bentuk koordinat kutub yaitu P (r, α).

Koordinat kartesius dengan koordinat polar dapat digambar menjadi grafik seperti di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Grafik Kartesius dan Polar

Titik pusat pada koordinat kutub memiliki letak titik P yang dapat digambarkan dengan (r, α). r menunjukan jarak OP, sedangkan α menunjukan sudut antara sumbu OX positif dengan OP. Untuk itu perhitungan besar sudut α berawal dari sumbu OX positif dan berputar berkebalikan dengan arah jarum jam.

Persamaan dan Perbedaan Koordinat Kartesius Dengan Koordinat Polar

Persamaan antara kartesius dengan polar ialah sama sama termasuk koordinat Matematika. Namun jika ditinjau dari segi perbedaannya, maka dapat anda perhatikan penjelasan masing masing koordinat yaitu meliputi:

Koordinat Kartesius

Peletakkan titik P pada kartesius dapat ditunjukan dalam bentuk himpunan pasangan berurutan yakni P (x, y), dimana :

  • Koordinat x disebut absis, yakni jarak antara titik menuju sumbu Y.
  • Koordinat y disebut ordinat, yakni jarak antara titik menuju sumbu X.

Koordinat Polar (Kutub)

Letak P pada koordinat kutub dapat digambarkan dalam bentuk ukuran jarak r dengan sudut α. Dimana:

  • Jarak r ialah jarak anatara titik P (x, y) menuju titik asal O (0,0). Untuk memperoleh besar jarak r dapat menggunakan rumus pythagoras yakni r² = x² + y².
  • Titik P pada koordinat kutub dapat digambarkan dalam bentuk P (r, α).
  • Sudut α ialah sudut yang dibentuk antara garis hubung pada titik P terkadap titik O (0,0) dengan sumbu X positif, dimana peritungan arahnya berkebalikan dengan arah jarum jam.

Mengubah Koordinat Kartesius Menjadi Koordinat Polar

Dalam mengubah koordinat kartesius menjadi koordinat polar dapat dilakukan dengan membuat sebuah grafik yang menghubungkan kedua koordinat Matematika tersebut. Jika keduanya digabungkan dalam satu koordinat, maka akan membentuk sebuah segitiga siku siku dimana panjang sisinya berupa sisi x, y dan r. Untuk memperoleh jarak r dapat menggunakan konsep teorema pythagoras yakni:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Rumus Jarak r

Selain menerapkan konsep teorema pythagoras, tetapi juga menerapkan perbandingan trigonometri seperti di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Konsep Perbandingan Trigonometri

Kesimpulan:
Untuk mengubah koordinat kartesius (x, y) menjadi koordinat polar (r, α), maka menggunakan aturan seperti di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Rumus Konversi Koordinat Kartesius Menjadi Koordinat Polar

Mengubah Koordinat Polar Menjadi Koordinat Kartesius

Dalam mengubah koordinat polar menjadi koordinat kartesius dapat dilakukan dengan membuat sebuah grafik yang menghubungkan kedua koordinat Matematika tersebut. Jika keduanya digabungkan dalam satu koordinat, maka akan membentuk sebuah segitiga siku siku dimana panjang sisinya berupa sisi x, y dan r.  Dalam mengubah koordinat kutub menjadi kartesius pada dasarnya menggunakan konsep perbandingan trigonometri seperti di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Konsep Perbandingan Trigonometri

Kesimpulan:
Untuk mengubah koordinat polar (r, α) menjadi koordinat kartesius (x, y), maka menggunakan aturan seperti di bawah ini:

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Rumus Konversi Koordinat Polar Menjadi Koordinat Kartesius

Contoh Soal

Setelah menjelaskan ttentang koordinat kartesius dan koordinat polar di atas. Selanjutnya saya akan membagikan beberapa contoh soal koordinat kartesius dan koordinat polar. Berikut contoh soal dan pembahasannya yaitu:

1. Ubahlah koordinat kartesius (1, 1) menjadi koordinat polar?

Jawab.

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Jawaban Contoh Soal 1

Jadi koordinat polarnya ialah (r, α) = (√2, 45°).

2. Konversikan koordinat polar (2 30°) menjadi koordinat kartesius?

Jawab.

Mengenal Koordinat Kartesius dan Polar dalam Matematika
Jawaban Contoh Soal 2

Jadi koordinat kartesiusnya ialah (x, y) = (√3, 1)


Daftar Pustaka:

http://www.antotunggal.com/2021/10/mengenal-koordinat-kartesius-dan-polar.html

IDENTITAS TRIGONOMETRI

Identitas Trigonometri Dan Contoh Soalnya


Jika salah satu satu sudut 90 derajat dan sudut lainnya diketahui, dengan demikian sudut ketiga dapat ditemukan, karena tiga sudut segitiga bila dijumlahkan menjadi 180 derajat. Karena itu dua sudut (yang kurang dari 90 derajat) bila dijumlahkan menjadi 90 derajat: ini sudut komplementer.

Kegunaan

Ada banyak aplikasi trigonometri. Terutama adalah teknik triangulasi yang digunakan dalam astronomi untuk menghitung jarak ke bintang-bintang terdekat, dalam geografi untuk menghitung antara titik tertentu, dan dalam sistem navigasi satelit.

Bidang lainnya yang menggunakan trigonometri termasuk astronomi (dan termasuk navigasi, di laut, udara, dan angkasa), teori musik, akustik, optik, analisis pasar finansial, elektronik, teori probabilitas, statistika, biologi, pencitraan medis/medical imaging (CAT scan dan ultrasound), farmasi, kimia, teori angka (dan termasuk kriptologi), seismologi, meteorologi, oseanografi, berbagai cabang dalam ilmu fisika, survei darat dan geodesi, arsitektur, fonetika, ekonomi, teknik listrik, teknik mekanik, teknik sipil, grafik komputer, kartografi, kristalografi.

Ada pengembangan modern trigonometri yang melibatkan “penyebaran” dan “quadrance”, bukan sudut dan panjang. Pendekatan baru ini disebut trigonometri rasional dan merupakan hasil kerja dari Dr. Norman Wildberger dari Universitas New South Wales. Informasi lebih lanjut bisa dilihat di situs webnya.


Rumus – Rumus yang perlu dipahami

  • Rumus Dasar yang merupakan Kebalikan

Rumus Dasar Kebalikan

  • Rumus Dasar yang merupakan hubungan perbandingan

Rumus Dasar Perbandingan

  • Rumus Dasar yang diturunkan dari teorema phytagoras

Rumus Dasar phytagoras


  • Contoh 1

Buktikan identitas berikut:

  • Sin α . Cos α . Tan α =  (1 – Cos α)  (1 + Cos α)

Jawab:

Sin α . Cos α . Tan α


  • Sin β . Tan β + Cos β = Sec β

Jawab:

Sin β . Tan β + Cos β



Persamaan Trigonometri

Persamaan trigonometri dapat diselesaikan dengan menggunakan daftar atau menggunakan rumus-rumus perbandingan sudut-sudut berelasi.


Periodisitas Trigonometri

Teorema :

Fungsi f(x) = sin x dan g(x) = cos x adalah fungsi periodik yang berperiode dasar 360. Sedangkan fungsi h(x) = tan (x) dan g(x) = cotg (x) adalah fungsi periodik yang berperiode dasar 180. Dengan demikian dapat diketahui :

Periodisitas Trigonometri

  • Persamaan Trigonometri Sederhana

Persamaan Trigonometri Sederhana



  • Contoh 2

Tentukan himpunan Penyelesaian dari Persamaan Sin x =

Persamaan Sin x

Jawaban :

Penyelesaian dari Persamaan Sin x

  • Persamaan Trigonometri dalam bentuk a cos x + b sin x = c

Cara penyelesaian persamaan tersebut di atas sebagai berikut:

Rumus Persamaan Trigonometri


  • Contoh 3

Tentukan himpunan penyelesaian dari persamaan:

Cos y – Sin y = 1, jika 0o ≤ y ≤ 360o

Jawab:

Cos y – Sin y = 1 ↔ a = 1; b = – 1 ; c = 1

Cos y – Sin y = 1


  • Persamaan Trigonometri yang berbentuk Sin px = a, cos px = a, dan tan px = a, dengan a dan p adalah konstanta

Penyelesaian persamaan trigonometri yang berbentuk Sin px = a, cos px = a  dan

tan px = a dapat dilakukan dengan cara mengubah persamaan-persamaan trigonometri tersebut menjadi persamaan trigonometri dasar.

Teorema:

Teorema

Himpunan Penyelesaian umum adalah :

Penyelesaian Teorema

Teorema b

Himpunan Penyelesaian umum adalah :

Himpunan Penyelesaian

Teorema c

Himpunan Penyelesaian umum adalah

Himpunan Penyelesaian umum



  • Persamaan Trigonometri yang memuat jumlah atau selisih sinus atau kosinus

Untuk menentukan himpunan penyelesaian persamaan trigonometri yang memuat jumlah atau selisih sinus kosinus, diperlukan rumus penjumlahan dan pengurangan sinus dan kosinus sebagai berikut :

rumus penjumlahan dan pengurangan sinus dan kosinus


Contoh :

Tentukan himpunan penyelesaian dari persamaan trigonometri :

persamaan trigonometri

Jawab:

himpunan penyelesaian dari persamaan trigonometri


Jadi, Himpunan Penyelesaian persamaan


  • Persamaan Trigonometri yang dapat diubah menjadi persamaan kuadrat dalam sinus, kosinus atau tangens

Pada dasarnya sebuah persamaan trigonometri yang dapat diubah menjadi persamaan kuadrat dapat dicari penyelesaianya menggunakan faktorisasi, melengkapkan bentuk persamaan kuadrat sempurna atau dengan rumus abc dengan memperhatikan sifat-sifat dari trigonometri.

Contoh :

persamaan kuadrat dalam sinus, kosinus atau tangens

sinus, kosinus atau tangens


Bentuk a cos x + b sin x

Bentuk a cos x + b sin x bisa diubah menjadi

a cos x + b sin x = k cos (x – α)

Nilai k dan α tidak ada di ruas kiri, sehingga bisa dicari dengan cara sebagai berikut

  • a cos x + b sin x = k cos (x – α)
  • a cos x + b sin x = k [cos x cos α + sin x sin α]
  • a cos x + b sin x = k cos x cos α + k sin x sin α
  • a cos x + b sin x = k cos α cos x + k sin α sin x

Maka :


Jika k sin α dan k cos α kita bagikan maka diperoleh

Jika k sin α dan k cos α

Kesimpulan

a cos x + b sin x = k cos (x – α)

dengan

dengan

Dan

dan



  • Contoh soal
  • Ubahlah bentuk cos x + √3sinx menjadi bentuk k cos (x – α)!

Penyelesaian :

Penyelesaian

Jadi, cosx + √3sinx dapat di ubah menjadi 2cos(x – 60°)

  • Ubahlah bentuk -√3 cos x + sin x menjadi bentuk k cos (x – α)!

Penyelesaian :

Penyelesaian

Jadi,  -√3 cosx + sin x dapat di ubah menjadi 2 cos (x – 150°)

  • Ubahlah bentuk cos x – sin x menjadi bentuk k cos (x – α)!

Penyelesaian :

Penyelesaian

Daftar Pustaka:

https://www.dosenpendidikan.co.id/identitas-trigonometri/

Selasa, 11 Januari 2022

SUDUT-SUDUT BERELASI PADA KUADRAN I, II, III, IV

SUDUT-SUDUT BERELASI PADA KUADRAN I, II, III, IV DAN CONTOH SOAL


Perbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip (0 − 90°).

Dengan menggunakan sudut-sudut relasi, kita dapat menghitung nilai perbandingan trigonometri untuk sudut-sudut pada kuadran lainnya, bahkan untuk sudut yang lebih dari 360°, termasuk juga sudut-sudut negatif.

Sudut Relasi Kuadran I

Untuk setiap α lancip, maka (90° − α) akan menghasilkan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut :

sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α

Sudut Relasi Kuadran II

Untuk setiap α lancip, maka (90° + α) dan (180° − α) akan menghasilkan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut :

sin (90° + α) = cos α
cos (90° + α) = -sin α
tan (90° + α) = -cot α

sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α

Sudut Relasi Kuadran III

Untuk setiap α lancip, maka (180° + α) dan (270° − α) akan menghasilkan sudut kuadran III. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut :

sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan α

sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α

Sudut Relasi Kuadran IV

Untuk setiap α lancip, maka (270° + α) dan (360° − α) akan menghasilkan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut tersebut dinyatakan sebagai berikut :

sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α

sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α

Jika kita perhatikan, rumus-rumus diatas memiliki pola yang hampir sama, oleh karenanya sangatlah tidak bijak jika kita harus menghapalnya satu per satu. Ada 2 hal yang perlu diperhatikan, yaitu sudut relasi yang digunakan dan tanda untuk tiap-tiap kuadran.

Untuk relasi  (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot

Untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan

Tanda untuk masing-masing kuadran :
Kuadran I (0 − 90°) : semua positif
Kuadran II (90° − 180°) : sinus positif
Kuadran III (180° − 270°) : tangen positif.
Kuadran IV (270° − 360°) : cosinus positif


Contoh 1
Untuk setiap perbandingan trigonometri berikut, nyatakan dalam perbandingan trigonometri sudut komplemennya !
sin 20°
tan 40°
cos 53°

Jawab :
sin 20° = sin (90° − 70°)
sin 20° = cos 70°

tan 40° = tan (90° − 50°)
tan 40° = cot 50°

cos 53° = cos (90° − 37°)
cos 53° = sin 37°

Jika kita perhatikan sin berubah menjadi cos, tan berubah menjadi cot dan cos berubah menjadi sin dikarenakan relasi yang digunakan adalah (90° − α) dan ketiga perbandingan trigonometri diatas bernilai positif, karena sudut 20°, 40° dan 53° berada di kuadran I.

Contoh 2
Nyatakan setiap perbandingan trigonometri berikut dalam sudut 37° !
tan 143°
sin 233°
cos 323°

Jawab :
Sudut 143° terletak pada kuadran II, sehingga tan 143° bernilai negatif.
tan 143° = tan (180° − 37°)
tan 143° = -tan 37°

Sudut 233° terletak pada kuadran III, sehingga sinus bernilai negatif.
sin 233° = sin (270° − 37°)
tan 233° = -cos 37°
Perhatikan bahwa sin berubah menjadi cos karena relasi yang digunakan (270° −  α)

Sudut 323° terletak pada kuadran IV, sehingga cosinus bernilai positif.
cos 323° = cos (360° − 37°)
cos 323° = cos 37°


Contoh 3
Tanpa menggunakan kalkulator, tentukan nilai dari sin100cos190cos350sin260

Jawab :
sin 100° = sin (90° + 10°) = cos 10°
cos 190° = cos (180° + 10°) = -cos 10°
cos 350° = cos (360° − 10°) = cos 10°
sin 260° = sin (270° − 10°) = -cos 10°

Sehingga :
sin100cos190cos350sin260=cos10(cos10)cos10(cos10)=2cos102cos10=1


Contoh 4
Jika (x + 20°) adalah sudut lancip, tentukan nilai dari tan(x+110)2cot(x+20)

Jawab :
tan (x + 110°) = tan (90° + (x + 20°))
Karena (x + 20°) lancip, maka (90° + (x + 20°)) adalah sudut kuadran II, sehingga tangen bernilai negatif.
tan (90° + (x + 20°)) = -cot (x + 20°)

akibatnya
tan(x+110)2cot(x+20)=cot(x+20)2cot(x+20)=12


Contoh 5
Diketahui cot (x + 36°) = tan 2x. Jika 2x adalah sudut lancip, tentukan nilai x !

Jawab :
cot (x + 36°) = tan 2x
Karena 2x sudut lancip, pastilah 2x terletak dikuadran I. Dengan menggunakan relasi sudut kuadran I, maka :
tan 2x = cot (90° − 2x)

Sehingga
cot (x + 36°) = cot (90° − 2x)
x + 36 = 90° − 2x
3x = 54
x = 18


Contoh 6
Tentukan nilai dari setiap perbandingan trigonometri berikut !

a.  cos 135°
Jawab :
Sudut 135° terletak di kuadran II, sehingga cosinus bernilai negatif.
cos 135° = cos (180 − 45°)
cos 135° = -cos 45°
cos 135° = -12√2

b.  tan 120°
Jawab :
Sudut 120° terletak di kuadran II, sehingga tangen bernilai negatif.
tan 120° = tan (180 − 60°)
tan 120° = -tan 60°
tan 120° = -√3

c.  sin 210°
Jawab :
Sudut 210° terletak di kuadran III, sehingga sinus bernilai negatif.
sin 210° = sin (180° + 30°)
sin 210° = -sin 30°
sin 210° = -12

d.  tan 225°
Jawab :
Sudut 225° terletak di kuadran III, sehingga tangen bernilai positif.
tan 225° = tan (180° + 45°)
tan 225° = tan 45°
tan 225° = 1

e.  cos 315°
Jawab :
Sudut 315° terletak di kuadran IV, sehingga cosinus bernilai positif.
cos 315° = cos (360° − 45°)
cos 315° = cos 45°
cos 315° = 12√2

f.  sin 300°
Jawab :
Sudut 300° terletak di kuadran IV, sehingga sinus bernilai negatif.
sin 300° = sin (360° − 60°)
sin 300° = -sin 60°
sin 300° = -12√3

g.  sin 150° dan csc 150°
Jawab :
Sudut 150° terletak di kuadaran II, sehingga sinus bernilai positif.
sin 150° = sin (180 − 30°)
sin 150° = sin 30°
sin 150° = 12

csc 150° = 1sin150
csc 150° = 112
csc 150° = 2

h.  cos 240° dan sec 240°
Jawab :
Sudut 240° terletak di kuadran III, sehingga cosinus bernilai negatif.
cos 240° = cos (180° + 60°)
cos 240° -cos 60°
cos 240° = -12

sec 240° = 1cos240
sec 240° = 112
sec 240° = -2

i.  tan 330° dan cot 330°
Jawab :
Sudut 330° terletak di kuadran IV, sehingga tangen bernilai negatif.
tan 330° = tan (360° − 30°)
tan 330° = -tan 30°
tan 330° = -13√3

cot 330° = 1tan330
cot 330° = 1133
cot 330° = -√3


Perbandingan Trigonometri Sudut Negatif

sin (-α) = -sin α
cos (-α) = cos α
tan (-α) = -tan α


Contoh 7
Tentukan nilai dari :
sin (-30°)
cos (-135°)
tan (-330°)

Jawab :
sin (-30°) = -sin 30°
sin (-30°) = -12

cos (-135°) = cos 135°  (K.II cos negatif)
cos (-135°) = cos (180° − 45°)
cos (-120°) = -cos 45°
cos (-120°) = -12√2

tan (-330°) = -tan 330°  (K.IV tan negatif)
tan (-330°) = -{tan (360° − 30°)}
tan (-300°) = -{-tan 30°}
tan (-300°) = tan 30°
tan (-300°) = 13√3


Perbandingan Trigonometri Sudut > 360°

Untuk n bilangan bulat maka :
sin (α + n.360°) = sin α
cos (α + n.360°) = cos α
tan (α + n.360°) = tan α


Contoh 8
Tentukan nilai dari sin 780°
Jawab :
sin 780° = sin (60° + 2. 360°)
sin 780° = sin 60°
sin 780° = 12√3


Contoh 9
Tentukan nilai dari tan 690°
Jawab :
tan 690° = tan (330° + 1. 360°)
tan 690° = tan 330°  (K.IV tan negatif)
tan 690° = tan (360° − 30°)
tan 690° = -tan 30°
tan 690° = -13√3

atau

tan 690° = tan (-30° + 2. 360°)
sin 405° = tan (-30°)
sin 405° = -tan 30°
sin 405° = -13√3


Contoh 10
Tentukan nilai dari cos 1200°
Jawab :
cos 1200° = cos (120° + 3. 360°)
cos 1200° = cos 120° (K.II cos negatif)
cos 1200° = cos (180° − 60°)
cos 1200° = -cos 60°
cos 1200° = -12
312
Daftar Pustaka:
https://smatika.blogspot.com/2017/04/perbandingan-trigonometri-sudut-berelasi.html

REMEDIAL PAT MTK WAJIB